

Numerical modeling of cavitating venturi – a flow control element of propulsion system

Alok Majumdar
Thermodynamics & Heat Transfer Group
NASA/Marshall Space Flight Center
alok.majumdar@msfc.nasa.gov

Thermal & Fluids Analysis Workshop 2002
August 12 – 16
University of Houston Clear Lake Campus
Houston, TX

CONTENT

- 1. Introduction
- 2. Flow Characteristics
- 3. Numerical Modeling
- 4. Results & Discussion
- 5. Conclusions
- 6. Acknowledgements

Introduction

- 1. What is cavitating venturi?
- 2. Use of cavitating venturi
- 3. Past work
 - Experimental
 - Analytical
- 4. Present Contribution

What is cavitating venturi?

A venturi operating with a throat pressure equal to the vapor pressure of the fluid corresponding to the temperature is called a 'cavitating venturi'

Use of cavitating venturi

- Propellant flow and mixture ratio in the combustion chamber is controlled by cavitating venturi
- It maintains constant propellant flowrate for fixed inlet conditions (pressure and temperature) and wide range of outlet pressure
- During ignition, it maintains constant flowrate while pressure is building from ambient condition
- At steady-state condition, it maintains constant flowrate while pressure fluctuates due combustion oscillation

Past Work (Experimental)

Randall (1951) – Journal of American Society

FIG. 1. THICK PLATE ORIFICE AND FLOW CHARACTERISTICS

FIG. 4 TYPICAL CAVITATING VENTURI ORIFICE

FIG. 5 TYPICAL CAVITATING VENTURI CALIBRATION

• Flowrate through cavitating venturi is calculated from the following equation:

$$\dot{m} = C_d A_t \sqrt{2\rho g_c (p - p_{sat})}$$

- There has been no published reference of an effort to model cavitating venturi by CFD or network analysis methods
- Modeling of phase change and twophase flow are required to compute flow through cavitating venturi

Present Contribution

- Finite volume model (FVM) of cavitating venturi using Generalized Fluid System Simulation Program (GFSSP) (http://eodd.msfc.nasa.gov/GFSSP/)
- FVM solves for mass, momentum and energy conservation equations in venturi
- Numerical predictions of cavitations at the throat
- Predictions of choked flow of liquid when it cavitates

2. Flow Characteristics

- Pressure decreases in the converging section and increases in the diverging section
- With decrease of downstream pressure, pressure at throat reaches vapor pressure (Incipient cavitations)
- With further reduction of downstream pressure, two phase condition extends (Cavitating flow)
- Vapor bubble collapses further downstream and flow becomes single phase

3. Numerical Model

- Governing Equations in Finite Volume Scheme
- Solution of Governing Equations
- Generalized Fluid System Simulation Program (GFSSP)

MASS CONSERVATION EQUATION

$$\frac{m_{r+\Delta r}-m_r}{\Delta \tau} = \frac{j=n}{\sum_{j=1}^{n} m_{ij}}$$

Note: Pressure does not appear explicitly in Mass Conservation Equation although it is earmarked for calculating pressures

MOMENTUM CONSERVATION EQUATION

Represents Newton's Second Law of Motion

Mass × *Acceleration* = *Forces*

- Unsteady
- Longitudinal Inertia
- Transverse Inertia

- Pressure
- Gravity
- Friction
- Centrifugal
- Shear Stress
- Moving Boundary
- Normal Stress
- External Force

MOMENTUM CONSERVATION EQUATION

Mass x Acceleration Terms in GFSSP

Unsteady

$$\frac{\left(mu_{ij}\right)_{\tau+\Delta\tau}-\left(mu_{ij}\right)_{\tau}}{g_{c}\Delta\tau}$$

Longitudinal Inertia

$$MAX \left| m_{ij}, 0 \right| \left(u_{ij} - u_{ii} \right) - MAX \left| - m_{ij}, 0 \right| \left(u_{ij} - u_{ii} \right)$$

Transverse Inertia

$$+MAX \left| m_{trans}, 0 \right| \left(u_{ij} - u_{p} \right) - MAX \left| -m_{trans}, 0 \right| \left(u_{ij} - u_{p} \right)$$

ENERGY CONSERVATION EQUATION

Based on Upwind Scheme

Enthalpy Equation

Rate of Increase of Internal Energy = Enthalpy Inflow - Enthalpy Outflow + Heat Source

Fluid

$$\frac{m\left(h-\frac{p}{\rho J}\right)_{\tau+\Delta \tau}-m\left(h-\frac{p}{\rho J}\right)_{\tau}}{\Delta \tau} = \sum_{j=1}^{j=n} \left\{ MAX \begin{bmatrix} \cdot \\ -m_{ij}, 0 \end{bmatrix} h_{j} - MAX \begin{bmatrix} \cdot \\ m_{ij}, 0 \end{bmatrix} h_{i} \right\} + Q_{i}$$

Node

j = 1

Single Fluid k = 1

EQUATION OF STATE

For unsteady flow, resident mass in a control volume is calculated from the equation of state for a real fluid

$$m = \frac{pV}{RTz}$$

Z is the compressibility factor determined from higher order equation of state

EQUATION OF STATE

- GFSSP uses two separate Thermodynamic Property Packages
 GASP/WASP and GASPAK
- GASP/WASP uses modified Benedict, Webb & Rubin (BWR)
 Equation of State
- GASPAK uses "standard reference" equation from
 - National Institute of Standards and Technology (NIST)
 - International Union of Pure & Applied Chemistry (IUPAC)
 - National Standard Reference Data Service of the USSR

SOLUTION PROCEDURE

- Non linear Algebraic Equations are solved by
 - Successive Substitution
 - Newton-Raphson
- GFSSP uses a Hybrid Method
 - SASS (Simultaneous Adjustment with Successive Substitution)
 - This method is a combination of Successive Substitution and Newton-Raphson

GFSSP Solution Scheme

SASS: Simultaneous Adjustment with Successive Substitution

Approach: Solve simultaneously when equations are strongly coupled and non-linear

Advantage: Superior convergence characteristics with affordable computer memory

GFSSP PROCESS FLOW DIAGRAM

Solver & Property Module

User Subroutines

Preprocessor

Input Data File

- Command line preprocessor
- Visual preprocessor

• Equation Generator

- Equation Solver
- Fluid Property Program

Output Data File

New Physics

- Time dependent process
- non-linear boundary conditions
- External source term
- Customized output
- New resistance / fluid option

4. Results

- 1. Finite Volume Discretization of Venturi
- 2. Pressure Distribution
- 3. Density Distribution
- 4. Compressibility Factor
- 5. "Choked" Flowrate
- 6. Comparison with Bernoulli model

Nozzle Geometry

Pressure Distribution in Cavitating Venturi

Compressibility factor distribution in a Cavitating Venturi

Effect of Inlet Pressure on Flowrate

Comparison of Predicted Choked Flowrate with Bernoulli Model (Fluid : Hydrogen)

P _{INLET} (PSIA)	T _{INLET} (R)		PINLET (LBM/FT ³)	A _{THROAT} (IN ²)	M _{DOT} (GFSSP) (LB/S)		M _{DOT} (BERNOULLI) (LB/S)
413	46.3	55.28	4.265	0.0113	0.243	0.9	0.266
601	46.3	55.28	4.378	0.0113	0.302	0.9	0.332
977	46.3	55.28	4.56	0.0113	0.372	0.9	0.441
1381	46.3	55.28	4.715	0.0113	0.433	0.9	0.537

Discrepancies in flowrate are due to constant density assumption in Bernoulli model

Conclusions

- Cavitating flow in venturi can be predicted by solving conservation equations of mass, momentum and energy conservation equations in conjunction with thermodynamic equation of state
- Bernoulli model overpredicts the flowrate due to constant density assumption
- Rapid drop in compressibility indicates that sound velocity drops significantly at throat which may be the reason for occurrence of choked flow at low velocity

References & Acknowledgements

References:

- Randall, L. N., "Rocket Applications of the Cavitating Venturi", J. American Rocket Society, Vol. 22 (1952), 28-31
- Karplus, H. B., "The Velocity of Sound in a Liquid Containing Gas Bubbles", AEC Research and Development Report, Contract No. AF (11-!)-528, June 11, 1958
- Majumdar, A. K., "A Second Law Based Unstructured Finite Volume Procedure for Generalized Flow Simulation", Paper No. AIAA 99-0934, 37th AIAA Aerospace Sciences Meeting Conference and Exhibit, January 11-14, 1999, Reno, Nevada

Acknowledgements:

- The work was supported by Space Launch Initiative Program of Marshall Space Flight Center
- The Author wishes to acknowledge Ms. Kimberly Holt of NASA/MSFC/TD53 for providing valuable information during the course of work